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Abstract 
Functional neuroimaging has been used to map the brain structures involved in the 
execution and guidance of arm and hand movements during writing, in the learning of 
writing movements and in relation to the linguistic components of written speech 
production. It was shown that handwriting, like other visuospatial motor tasks, involves 
motor and premotor cortical areas as well as dorsal stream areas of sensory processing, 
including the superior parietal cortex. In addition, ventral stream areas such as the left 
parieto-temporo-occipital junction were activated in relation to visual word forms as were 
the left inferior frontal gyrus and left inferior parietal cortex in relation to the production of 
symbolic characters. The neural correlates of designing a coherent text and elaborating a 
text by re-iterative modification, however, remain topics for future research.  

 

1. Introduction 

Writing is a multilayered process which has been explored using different approaches and 

research techniques. Functional neuroimaging provides a means of mapping the brain structures 

activated in relation to a specific task, e.g. writing. By using inferential statistics and stereotactic 

reference coordinate systems, probabilistic accounts of the brain areas involved in this type of 

brain work are generated, which has general implications. There is hope of achieving a detailed 

understanding of the underlying brain processes that cannot be studied in non-human primates, 

but are specific for humans. There are two major issues that need to be addressed in this context. 

First, one would like to know what the characteristics of these research tools are, to see the 

advantages, and to realize their limitations. Second, one needs to analyze the processes 

underlying writing to understand which aspects have been studied so far or are promising for 

future studies. These two aspects will be discussed in this article. 
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2.  Functional neuroimaging methods 

Functional neuroimaging is a powerful technology for mapping human brain function that was 

developed in the last decade of the 20th century.  Most widely used are measurements of 

stimulation-related haemodynamic changes. Initially, these changes were assessed with 

measurements of the regional cerebral blood flow (rCBF) using positron emission tomography 

(PET), and later with measurements of the blood oxygenation level-dependent changes (BOLD) 

using functional magnetic resonance imaging (fMRI). These tomographic imaging tools can 

localize brain activity changes with relatively good spatial resolution of approximately 5 to 9 mm 

(Frackowiak et al. 1994, Calamante et al. 1999). In comparison to the thickness of the cerebral 

cortex and the dimensions of the subcortical grey matter structures, however, this is still a limited 

spatial resolution. Similarly, the temporal resolution of PET and fMRI is also relatively poor, 

being in the range of approximately 1 s to 1 min, due to the haemodynamic characteristics of the 

measurements. Nevertheless, the reconstructed tomographic imaging data allow us to detect 

activity changes occurring simultaneously in different parts of the brain, including the different 

parts of the cerebral cortex, subcortical structures such as the basal ganglia and thalamus, and the 

cerebellum. It should be born in mind, however, that the observed haemodynamic changes 

represent only indirect measures of brain activity. PET-measurements of rCBF function by 

identifying significant changes that persist in the steady-state during the scanning interval 

compared to the control steady-state. FMRI exploits the consistency of activation-related changes 

over a couple of subsequent activation-control cycles (Frahm et al. 1992, Bandettini et al. 1997). 

Although under physiological conditions there is a tight coupling of activation-related metabolic 

and haemodynamic changes to increases in neural activity (Fox et al. 1984,  Blomqvist et al. 

1994, Bandettini et al. 1997, Hoge et al.  1999), bioelectric neural activity has a time-course in 

the range of several milliseconds, faster than the haemodynamic measures by three orders of 

magnitude. Therefore, one of the assumptions underlying functional imaging with PET and fMRI 

is that a state of activation has to be kept constant over a sufficiently long period of time in order 

to capture functional changes during a condition approaching a steady state. In fact, Logothetis 

and collaborators (2001) were able to show by simultaneous recordings of fMRI signals and 

micoelectrode recordings in the visual cortex of primates that the time course and spatial location 

of the stimulation induced BOLD-increase correlated with the time course and spatial location of 

stimulation induced brain electric activity. Notably, this brain electric activity was the population 
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response of nerve cell assemblies, e.g. local field potentials, while the discharges of single 

neurons decayed rapidly, obscuring a correlation of the BOLD-response with single unit activity.  

Changes of brain activity were originally conceptualized as increased activity in a task-specific 

stimulation condition, as compared to a specific control condition (Raichle 1987). However, task-

specific decreases in brain activity are also of interest (Seitz & Roland 1992a, Drevets et al. 1995, 

Shulman et al. 1997, Kastrup et al. 2007). Such categorical comparisons were based on the 

simplified model of psychological subtraction (Petersen et al. 1988, Kosslyn et al. 1995). In 

addition, in factorial designs, the main effects of each variable, as well as the interaction between 

these variables in the different psychophysical tasks, can be identified explicitly (Price et al. 

1997). Also, biomathematical approaches have been developed to account for coherent brain 

activity in different brain regions, in relation to defined task conditions (Alexander & Moeller 

1994, Friston 1994, McIntosh & Gonzalez-Lima 1994, Büchel et al. 1997). These statistical 

approaches can be subdivided into those that are hypothesis-driven and region-based, thus 

restricting the search space by imposing an external model (McIntosh et al. 1994, Büchel et al. 

1997, Azari et al. 1999), and those that are data driven and evaluate the functional connectivity in 

the entire matrix of the image data (Friston et al. 1993, Hartmann et al. 2008). More recently, 

fMRI has been developed further to accommodate also activity recordings in an event-related 

fashion (D’Esposito et al. 1997, Buckner et al. 1998,  Friston et al. 1998, Beauchamp et al. 1999). 

These measurements can achieve a high spatial and high temporal resolution (Menon & Kim 

1999). The areas that survive the different steps of image analysis are usually converted to 

pseudocoloured hot spots, which thereafter can be superimposed onto co-registered structural MR 

images or anatomical templates (Steinmetz et al. 1992a, Frackowiak 1994). These hot spots 

indicate those areas in the brain that are specifically involved in a given task. However, it is 

becoming increasingly clear that such an area is not uniquely specialized for one task, but rather 

may also subserve related cerebral operations.  

Since in functional neuroimaging, brain images of different people are to be analyzed for groups 

of subjects and we want to compare image points that correspond to identical anatomical 

structures, tools have been developed to morph one individual brain into that of another person or 

into a common standard. In such a standard, activations can be described in stereotactic 

coordinates which allows the comparison across different laboratories and studies. Most widely 

used for this purpose is the stereotactic atlas of Talairach & Tournoux (1988). A major problem 
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in this process is the inter-individual variability of the human brain. In vivo MRI has shown that 

gyral configuration of the human brain is highly variable among different individuals and largely 

determined by epigenetic factors (Steinmetz et al. 1992b, Amunts et al. 1997, Kennedy et al. 

1998). Also, there are interhemispheric differences within and between the sexes, probably 

related to differences in handedness, skills, and capacities (Schlaug et al. 1995, Gur et al. 1999). 

Approaches to spatial standardization using linear and non-linear transformation procedures are 

confounded with residual inter-subject variability of several millimeters in magnitude in terms of 

structural inter-subject variability (Evans et al. 1988, Seitz et al. 1990, Friston et al. 1994, Roland 

et al. 1997). Conversely, it is well recognized that spatial image standardization may create 

virtual activation centers by merging of small, closely adjacent activity changes (Worsley et al. 

1992). More recently, there are techniques emerging which can transform brains that they match 

perfectly (Schormann & Kraemer 2002). Nevertheless, there is also considerable inter-subject 

variability of the cerebral activation patterns that appeared to be related to individual task 

performance (Schlaug et al. 1994, Hunton et al. 1996, Hasnain et al. 1998). Thus, in the case of a 

high mean activation signal related to consistent performance across subjects, the individual 

location of the activation focus is more similar than in case of a low mean signal. In the latter 

case the low mean signal could be due either to low activity change as well as less consistent 

performance across subjects. 

 

3. Functional Neuroanatomy 

The idea of functional neuroimaging is to develop an atlas which shows the localization of 

functions in the human brain. Brain science has learnt a lot from lesion studies in patients in that 

neurological deficits were correlated with brain lesions. Broca (1861) described a patient with an 

infarct lesion in the left inferior frontal cortex who suffered a deficit of speech production. Only a 

few years later Wernicke (1874) reported a patient with an infarct lesion in the left parietal cortex 

who was severely impaired in comprehension of speech. Later, it became clear that lesions in the 

left inferior frontal cortex can also disrupt writing, as a lesion in the inferior temporo-occipital 

cortex can selectively impair reading. By careful neurological or neuropsychological analyses 

and correlation of functional deficits with brain lesions, a differentiated picture of the relevance 

of the different brain areas for brain functions including language processing has been developed 
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(Mesulam 1990). However, brain lesions do not necessarily show the spot in the brain where a 

certain function originates. The brain structures that are important for a certain brain function can 

only be identified by studying this brain function with neuroimaging methods in healthy people. 

Moreover, anatomical landmarks such as cerebral sulci do not translate into microanatomical 

borders within the cerebral cortex, which was demonstrated for the inferior frontal gyrus or 

Broca’s area (Lindenberg et al. 2007). Thus, probabilistic maps of cytoarchitectonic areas and 

white matter fibre tracts have been created to localize this functionally relevant information in 

relation to macroanatomical landmarks and to coregister them with activation data from 

functional neuroimaging (Eickhoff et al. 2005). This is illustrated for activations in the inferior 

frontal cortex related to imagery of figure-of-eight movements performed with the right index 

finger (Binkofski et al. 2000). It is shown that the activations overlapped with Brodmann area 44 

(Figure 1).  

 

Figure 1: fMRI-activations related to imagery of figure-of-eight movements performed with the 

right index finger (blue area) in co-registration with probabilistic maps of cytoarchitectonic area 

44. The colour coding indicates the spatial overlap of area 44 in ten individual brains. The data 

have been spatially normalized and superimposed onto structural MR images at 10 mm and 20 

mms dorsal to the intercommissural plane, respectively. Further details in Binkofski et al. (2000).  
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The activations did not extend rostrally into the location of Brodmann area 45 which bears 

cognitive functions nor caudally into the adjacent Brodmann 6, which belongs to the premotor 

cortex. Even an inflation of the brain such that sulci appear in continuity with the cerebral gyri on 

the surface of the brain as well as complete flat maps have been developed for improved cerebral 

localization of activation areas (Fischl et al. 1999). 

 

4. Processes underlying writing 

Handwriting is a voluntary motor act. It is guided by visual feedback as the writing person 

observes the appearance of the letters and words he/she is writing. It is known that handwriting is 

performed with fast movements of the arm while the pen is being held virtually motionless in the 

hand (Kunesch et al. 1989). Handwriting has a high arm movement frequency in contrast to the 

slow movements in object manipulation with many points of reversal per movement stroke 

(Kunesch et al. 1989, Marquardt & Mai 1994). Functional neuroimaging studies have 

endeavoured to explore which brain areas participate in the motor performance of handwriting, 

guiding writing, in learning of the writing movements, and in the brain areas related to the 

semantic content of writing. However, due to the difficulty of writing in a lying position in a 

functional imaging scanner and the gross arm movements during handwriting, which may even 

result in head movements and, thus, image artefacts, only a limited number of neuroimaging 

studies of writing have been performed so far. The following is an overview of neuroimaging 

studies on writing.  

In two quite similar PET-studies on fast and slow handwriting with the dominant right hand, foci 

of activation were found in the left dominant sensorimotor circuitry involving the sensorimotor 

cortex, the lateral premotor cortex, the left anterior parietal cortex, the left supplementary motor 

area, the right precuneus, the left putamen, and the right anterior cerebellum (Seitz et al. 1997, 

Siebner et al. 2001). These areas showed a graded increase in activation related to the number of 

inversions in velocity per writing stroke (Siebner et al. 2001). Notably, in slow and exact writing 

of letters the anterior inferior parietal cortex was activated, while in fast writing of letters the 

posterior parietal cortex became activated (Seitz et al. 1997). This suggested two different modes 

of sensory guidance engaged in handwriting: focussed object-based guidance for slow 

movements and large-scale visuospatial guidance for fast movements (Figure 2). This 
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interpretation was in line with the hypothesis of closed-loop type I and ballistic type II 

movements (Freund 1986). Moreover, the data reflect the dichotomy of an object-based ventral 

stream and a dorsal stream for visuospatial information processing (Ungerleider & Haxby 1994). 

Both the anterior inferior and the posterior superior parietal cortical areas were activated 

bilaterally when subjects imagined handwriting in comparison to holding a pen motionless on the 

writing pad (Figure 2). In addition, there was an activation in the right anterior cingulate area 

which probably was related to subjective valuation of the imagined movement trajectories (Seitz 

et al. 2009). 

Recently, it was shown in an fMRI-study that writing to dictation activated the left sensorimotor 

cortex, premotor cortex, supplementary motor area, superior parietal lobe, and the dorsal portion 

of the inferior parietal cortex (Menon & Desmond 2001). In writing Japanese Kanji, subjects 

were required to combine several parts of a morpheme into the total Kanji symbol. Imaging of 

Kanji writing was found to be related to a bilateral activation of the premotor cortex, the pre-

supplementary motor area and the posterior and inferior parietal lobule next to the occipital lobe 

(Matsuo et al. 2001). Sugihara et al. (2006) attempted to identify the brain areas specific for 

handwriting using fMRI, when they compared writing names with silent naming. It was observed 

that three areas were activated: the posterior end of the left superior frontal gyrus, the anterior 

part of the left superior parietal lobule and the lower anterior part of the left supramarginal gyrus. 

Similarly, areas of fMRI activation related to writing the names of pictures and naming pictures 

silently involved the left superior parietal lobule, bilaterally the posterior and middle portions of 

the superior frontal cortex, and the right cerebellum (Katanoda et al. 2001). These dorsal stream 

areas can be related to upper arm movement control (Rizzolatti et al. 1998). 
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Figure 2: Graphemes bare of semantic content (left side). Activation areas related to imagery of 

writing graphemes occurred in the left anterior cingulate (yellow) and bilaterally in parietal 

cortex (right side). The left parietal activations were the same as in learning (brown), after 

learning (magenta), as well in and after learning of writing graphemes (red). The right parietal 

activations overlapped with those in learning to write graphemes and in the exact writing of 

letters (green), and with those in and after learning to write graphemes as well as in the fast 

writing of letters (blue). Further details in Seitz et al. (1997). 

Other studies aimed at singling out the brain areas that mediate visual guidance of writing 

movements by the particular characteristics of letters and words. These studies were evaluated by 

Bolger and collaborators (2005) who compiled 25 different studies of Western European, Chinese 

and Japanese languages. The authors found that the different writing systems engaged largely the 

same systems in terms of cortical regions. However, localization within these regions suggested 

differences across the writing systems. Most importantly, there was an area in the left mid-

fusiform gyrus which was consistent in localization across writing systems and was called the 

visual word form area (Bolger et al. 2005). This area corresponded closely to the activation area 

in the left posterior inferior temporal cortex related to writing Kanji (morphograms) as found in 

an fMRI-study in 10 healthy native Japanese speakers (Nakamura et al. 2000). This visual word 

form area most likely belongs to the ventral, occipito-temporal pathway which signifies the 

“what” contents of writing. Importantly, this area appears to be tuned towards a hierarchy of local 

combination detectors which allow humans to decipher increasingly larger fragments of words 

with high sensitivity and speed (Dehaene et al. 2005).  
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Handwriting is a skill which is usually acquired during the first year of school, subsequently 

being perfected by repetitive use. In fact, everybody knows that handwriting is quite specific to a 

person, but the written letters may change in configuration during lifespan related to the amount 

and speed of writing. Short-term learning to write graphemes was found to modulate activity 

patterns not only in the parietal cortex but also across cortical and subcortical motor relay 

structures. An initial activation in the cerebellum was attenuated during the learning process, 

while conversely the dorsal premotor cortex became more active (Seitz et al. 1994). These 

findings were in accordance with contemporary theories of motor learning (Willingham 1998). 

Furthermore, the initial activation of the right inferior parietal cortex resembled a similar 

activation found in the learning of sequential finger movements (Seitz & Roland 1992b, Seitz et 

al. 1997, Ungerleider et al. 2002).  

Longcamp et al. (2008) performed a learning study using fMRI and compared hand- and 

typewriting. These authors found that there was a stronger and longer lasting facilitation during 

several weeks for recognizing the orientation of characters that had been written by hand as 

compared to those typed. FMRI showed that there was greater activity related to learning of 

handwriting and normal letter identification in several brain areas which are known to be 

involved in the execution, imagery and observation of actions. These areas were the sensorimotor 

cortex, the supplementary motor area, and the anterior and posterior parietal cortex. 

Only few studies attempted to identify the brain areas mediating semantic processing during 

writing. In a PET-study it was found that the posterior inferior temporal gyrus was activated in 

Kanji writing, which is the writing of complex morphograms, while the left angular gyrus was 

activated in Kana writing, which is the writing of simple symbols (Tokunaga et al. 1999). While 

morphograms activated ventral “what” channel areas of information, processing seemingly 

related to the processing of object-type information, Kana writing activated the left inferior 

parietal cortex which has been implicated in the analytical processing of lexical information. 

More recently, it was found using fMRI that hand- and typewriting involve specifically the left 

inferior frontal cortex, i.e. Broca’s area, and bilaterally the inferior parietal lobule (Longcamp et 

al. 2008). These activation data confirm earlier findings in relation to the writing and imagery of 

writing figures (Binkofski et al. 2000). Specifically, Brodmann area 44 was found to be 

specifically activated when subjects became engaged in generating figure of eight trajectories 

with their right index finger when compared with being at rest (Figure 1). These activation data 



Rüdiger J. Seitz 

 gfl-journal, No. 2-3/2009 

74 

correspond nicely to clinical observations in two example patients with transient cerebral 

ischemia. Using MRI it was found that written naming was selectively impaired as a result of a 

hypoperfusion in the left posterior inferior frontal gyrus and precentral gyrus which returned to 

normal when blood flow was restored (Hillis et al. 2003).  

 

5. Perspectives  

Writing for producing a coherent text is a complex process demanding cognitive operations such 

as conception, planning, working memory, and subjective valuation, in addition to generating 

dedicated sensorimotor activity. In the centre, there is the acting writer who plans his writing 

actions, writes the text, and reviews what he has written. First of all, this involves brain activity 

related to the guidance of sensorimotor activity. Secondly, reviewing the text involves reading 

and comprehension. For both aspects brain structures are involved as described in this review. 

Finally, however, the writer may edit the text in order to improve phrasing and sharpen the 

content. This is a highly differentiated feedback activity requiring the subject to keep his 

conceptual plan active during the process of sensorimotor integration. In fact, the act of writing 

takes place in a certain environment in which the writing actor becomes aware of the topic he is 

going to write about, the potential audience, and his motivation to initiate writing (Hayes & 

Flower 1980). In a manner of feedback processing of what has been written in comparison to the 

mental image of what is going to be written, the written text is subsequently updated and revised. 

This is a multilayered cognitive or mental endeavour involving the writer’s intention, working 

memory, and problem solving strategies.  These cognitive processes have been studied using 

functional neuroimaging, but not in the context of writing.  

At a broader level, there is the writer’s long term-memory, involving the knowledge of the 

content of the topic to be written about and the actual discourse knowledge. According to 

Bereiter & Scardamalia (1987) writing involves the mental construction of the topic and is 

developed in view of the demand and the knowledge systems of the writer. More recently, it was 

proposed that a specialized functional and interactive framework may present the basis for the 

neural system involved in writing and similarly in reading. This highly specialized framework is 

composed of genetic influences, white matter tract structure, cortical nodes of language 
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representation, and culturally based organization of writing systems (Schlaggar & McCandliss 

2007).  

At this point in time, a fair amount is known about the brain structures involved in sensorimotor 

integration, language representation, working memory and problem solving strategies. Moreover, 

there is quite some information about the sensorimotor areas engaged in writing and how they are 

differentially activated during the process of learning handwriting. Also, the site of visual word 

form recognition has been localized in the human brain. In addition, it was found that the left 

inferior frontal gyrus and the left inferior parietal cortex are of critical importance for written 

language production very much in accordance with the big picture of speech processing in the 

human brain (Indefrey & Levelt 2004). However, virtually nothing is known about which brain 

areas are critical for constructing a written text, for initiating and maintaining writing, for 

elaborating the text, and for approving the final version of the text. Here, broad perspectives for 

future research are on the horizon. 
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